3D printing is based on two principles:
3D printing may be used as “inks” Plastics, polymers, resins, ceramics, or metals like titanium. Bio-printing involves using living material, usually the cells, instead of the inks. Using a 3D printer, it is now possible to obtain complex living tissues such as skin, cartilage, and even liver tissue. For this, we use several toners kinds of “cartridges” that contain different types of cells and molecules, such as proteins, essential for cohesion between cells.
For ten years, several types of applications have emerged.
Surgeons aim: to train on a model before operating the child. Prof. Samir Hamamah and his colleagues modeled with a 3D printer, human embryos created by Vito fertilization (IVF). This allows clinicians to observe the embryo from all angles to select the most viable to implant them in the uterus and increase the chances of success of IVF.
Some research teams use 3D printing to create kinds of synthetic biomaterial scaffolding, adapted to the morphology of the patient, which are subsequently colonized by cells to reconstitute the organ. There was, thus, created portions of cartilage and even complete bladders located subsequently in patients.
Many research projects are underway in the field of 3D bioprinting: skin, cornea, cartilage, liver, etc. “The laser printing allows for very precise control of the spatial arrangement of cells,” says Fabien Guillemot team “tissue bioengineering “in Bordeaux.” These cells should communicate with them to self-organize. This is a crucial step, very slow one. The research aims to control this arrangement so that it runs smoothly. “First use envisioned for these printed fabrics: medical research.” With the bio-printed fabrics, we will be able to test the efficacy of new drugs, the toxicity of certain substances, or even study the development of diseases,” Fabien is Guillemot enthusiasm. The Bordeaux team plans to recreate such tumors of patients with their own cancer cells and then test different therapeutic approaches and then administer the most effective.
Can you print a kidney or a heart to replace the defective organ of a patient? This horizon remains distant. “These are complex organs, which contain a large number of cells to nature and the different functions. And the interactions between them are many. Besides, it would also be able to make the blood vessels in these organs, and nerves that make them work, says Fabien Guillemot. For all these reasons, we cannot consider printing a functional member for ten or twenty years. “But he remains optimistic:” The bio-printing is the subject of considerable investment, public and private. The machines will undoubtedly evolve, and new opportunities will emerge in the coming years.”
Unleash your inner artist with our meticulously crafted Halloween Costume Bob Ross - experience the…
Learn the secrets to deep clean your house quickly and efficiently. Follow our expert guidelines…
Discover the top Cybersecurity Trends shaping remote work in 2024. Protect your business from emerging…
Explore how Generative AI industries are poised to revolutionize sectors from healthcare to finance and…
Whether you like to run to have proper training for your body or you want…
Cucumber has many health benefits and virtues. Rich in water, this vegetable provides vitamin C,…